Adaptive Fuzzy Classification-Rule Algorithm In Detection Malicious Web Sites From Suspicious URLs
نویسندگان
چکیده
منابع مشابه
Feature-based Malicious URL and Attack Type Detection Using Multi-class Classification
Nowadays, malicious URLs are the common threat to the businesses, social networks, net-banking etc. Existing approaches have focused on binary detection i.e. either the URL is malicious or benign. Very few literature is found which focused on the detection of malicious URLs and their attack types. Hence, it becomes necessary to know the attack type and adopt an effective countermeasure. This pa...
متن کاملLearning based Malicious Web Sites Detection using Suspicious URLs
Malicious Web sites largely promote the growth of Internet criminal activities and constrain the development of Web services. As a result, there has been strong motivation to develop systemic solution to stopping the user from visiting such Web sites. In this paper, we propose a learning based approach to classifying Web sites into 3 classes: benign, phishing, and malware. Our mechanism only an...
متن کاملWarningBird: Detecting Suspicious URLs in Twitter Stream
Twitter can suffer from malicious tweets containing suspicious URLs for spam, phishing, and malware distribution. Previous Twitter spam detection schemes have used account features such as the ratio of tweets containing URLs and the account creation date, or relation features in the Twitter graph. Malicious users, however, can easily fabricate account features. Moreover, extracting relation fea...
متن کاملSuspicious URL detection system using SGD Algorithm for twitter stream
Twitter is a one of the most popular social networking site used by millions of people in the world. As the usage growing rapidly in the recent years, attackers are concentrating more on twitter to gather personnel data and made changes to. It leads to the diminishing the privacy of the users. The attacker tweets suspicious URLs on the user’s timeline. These URLs contains spam, phishing and mal...
متن کاملMail_Alert: Online Suspicious URL Detection of Tweets from Twitter Public Timeline
Twitter, a famous social networking site where thousands of users use it to tweet to the world, is prone to spam, phishing, and malware distribution. Tweets are the atomic building blocks of Twitter, 140-character status updates with additional associated metadata. People tweet for a variety of reasons about a multitude of topics. Traditional spam detection scheme for twitter are ineffective ag...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Int. Arab J. e-Technol.
دوره 3 شماره
صفحات -
تاریخ انتشار 2013